## General Applications

## Rated Voltage

The AC voltage rating of Bussmann fuses is given in volts rms. Fuses tested to IEC are tested at 5\% above their rated voltage. British Style BS 88 fuses are tested at 10\% above its rated voltage. UL recognition tests are performed at the rated voltage.

## Rated Current

Rated current is given in amps rms. Bussmann fuses can continuously carry the rated current.

## Melting Characteristic

The melting characteristic shows the virtual melting time in seconds as a function of the prospective current in amps rms. The fuses are specially constructed for short-circuit protection against high level fault currents. Loading and operation of the fuse in the noncontinuous/dashed section of the melt curve must be avoided. The curve can also be read as the real melting time as a function of the RMS value of the pre-arc current.

## Clearing Integrals

The total clearing $I^{2 t}$ at rated voltage and at power factor of $15 \%$ are given in the electrical characteristics. For other voltages, the clearing $I^{2 t} t$ is found by multiplying by correction factor, K , given as a function of applied working voltage, $\mathrm{E}_{\mathrm{g}}$, (rms).

## Power Factor

For other power factor values, the total clearing integral can be calculated as a multiple of the clearing integrals, the correction factor K and the correction factor X.

## Arc Voltage

This curve gives the peak arc voltage, $U_{L}$, which may appear across the fuse during its operation as a function of the applied working voltage, $\mathrm{E}_{\mathrm{g}}$, (rms) at a power
factor of $15 \%$.

## Power Losses

Watts loss at rated current is given in the electrical characteristics.
The curve allows the calculation of the power losses at load currents lower than the rated current. The correction factor, $K_{p}$, is given as a function of the RMS load


 current, $\mathrm{l}_{\mathrm{b}}$, in \% of the rated current.

## Cut-Off Current

A fuse operation relating to short-circuits only. When a fuse operates in its current-limiting range, it will clear a short-

circuit in less than $1 / 2$ cycle. Also, it will limit the instantaneous peak let-through current to a value substantially less than

## General Applications

that obtainable in the same circuit if that fuse were replaced with a solid conductor of equal impedance.
A asymmetrical current
B symmetrical current

## Parallel Connection

When fuses are connected in parallel it is recommended that the applied voltage does not exceed $0.9 \mathrm{U}_{\mathrm{N}}$ (the rated voltage of the fuse). This is due to the fact that the energy released within the fuses may be unevenly shared between the parallel connected barrels.

When fuses are connected in parallel, one must take into account that the current sharing is not necessarily equal. And it must be checked, that the maximum load current is not exceeded.

## Series Connection

Fuses in series may not equally divide the applied voltage. It is recommended that series connected fuses should only be operated at fault currents that yield melting times less than 10 ms and a recovery voltage per fuse of less than or equal to $0.9 \mathrm{U}_{\mathrm{N}}$ (the rated voltage of the fuse).

## Mounting Guidance

The recommendations below have to be followed when mounting a Bussmann fuse with end plate threaded holes.

1. Screw in studs: $5 \mathrm{~N} \cdot \mathrm{~m}$ Max, $3 \mathrm{~N} \cdot \mathrm{~m}$ Min
2. Attachment of the fuse to bussbar by means of nut and

| washer: <br> Thread | Torque ( $\mathrm{N} \cdot \mathrm{m}$ )* |  |
| :---: | :---: | :---: |
| Configuration | Max | Min |
| 5/6" - 18, M8 | 25 | 20 |
| $33^{\prime \prime}-16$, M10 | 45 | 40 |
| $3 / 3$ | 45 | 40 |
| 1/2" - 13, M12 | 65 | 50 |
| 1/2-20 | 65 | 50 |

## Overloads

The design of Bussmann fuses is such that they can be operated under rather severe operating conditions imposed by overloads (any load current in excess of the maximum permissible load current).

In applications, there will be a maximum overload current, Imax, which can be imposed on the fuse with a corresponding duration and frequency of occurrence.
Time durations fall into two categories:

1. Overloads longer than one second
2. Overloads less than one second termed "impulse" loads.

The following table gives general application guidelines which, in the expression $\operatorname{Imax}<(\%$ factor $) \times I_{t} . I_{t}$ is the
melting current corresponding to the time " t " of the overload duration as read from the time-current curve of the fuse. The guidelines in the table below determine the acceptability of the selected fuses for a given I max.
Frequency of Occurrence Overloads (>1 sec) Impulse Loads (<1 sec) Less than once per month $\quad I_{\max }<80 \% x I_{t} \quad I_{\max }<70 \% x I_{t}$ Less than twice per week $\quad I_{\max }<70 \% x I_{t} \quad I_{\max }<60 \% x I_{t}$ Several times per day $I_{\text {max }}<60 \% \times I_{t}$
-
When impulse loads are an intrinsic/normal parameter of the load current either as single pulse or in trains of pulses or when their level is higher than the melting current at 0.01 seconds (per time-current curve), contact Bussmann for application assistance.
In addition to the parameters set forth in the preceding table, the RMS value of the load current as calculated for any period of 10 minutes or more should not exceed the maximum permissible load current.
Furthermore, it is important that a fuse should not be applied in the non-continuous/dashed portion of the associated time-current curve.

Any time-current combination point which falls in the non-continuous/dashed portion of the time-current curve is beyond the capability of the fuse to operate properly.

## DC Operation

Depending upon the short-circuit time constant and the magnitude of the prospective short-circuit current, the dc voltage at which a fuse can be applied may be less than its ac rating. Long time constants require a lower dc voltage. Conversely, however, higher available prospective shortcircuit currents result in faster fuse openings and thus permit a fuse to be operated at a higher DC voltage.
Consult Bussmann for additional information and application assistance when fuses have to operate under DC conditions.

## Load Current Versus

Conductor Cross
Section
Reduction of permissible

load current when the conductor cross section is less than that given in IEC Publication 269-1 \& 4 valid for Bussmann high speed fuses.

## Application Assistance

If you have application problems or need a fuse outside our standard program, please contact the nearest Bussmann representative. Phone numbers are shown on the back cover.

## North American Fuses



## Introduction

| North American Contents AmpCatalog |  |  |  |
| :---: | :---: | :---: | :---: |
| Number | Volts | Range | Page |
| DFJ | 600 | 1-600 | 125 |
| FWA | 130 | 1000-4000 | 126-127 |
| FWA | 150 | 70-1000 | 128-129 |
| FWX | 250 | 35-2500 | 130-131 |
| FWH | 500 | 35-1600 | 132-133 |
| KAC | 600 | 1-1000 | 134 |
| KBC | 600 | 35-800 | 135 |
| FWP | 700 | 5-1200 | 136-138 |
| FWJ | 1000 | 35-2000 | 139-140 |

## Accessories

Fuse Bases


## General Information

Bussmann offers a complete range of North American blade and flush-end style fuses and accessories. Their design and construction were optimized to provide:

- Low energy let-through ( $1^{2 t}$ )
- Low watts loss
- Superior cycling capability
- Low arc voltage
- Excellent DC performance

North American style fuses provide an excellent solution for medium power applications. While there are currently no published standards for these fuses, the industry has standardized on mounting centers that accept Bussmann fuses.

## Voltage Rating

All Bussmann North American style fuses are tested at their rated voltage. Bussmann should be consulted for applications exceeding those values.

## Accessories

External and internal open fuse indication is available for selected portions of the North American line. Fuse blocks are available for most applications.

## Drive Fuse High Speed Fuses



## Specifications

Description: High speed, current-limiting fuse. The Bussmann Drive Fuse will provide maximum protection for AC and DC drives and controllers and meet NEC® branch circuit protection requirements. The Drive Fuse has the lowest $I^{2}$ t of any branch circuit fuse to protect power semiconductor devices that utilize diodes, GTOs, SCRs and SSRs.
Dimensions: See page 21 for Class J dimensions.
Construction: Melamine tube with silver fuse element.

## Ratings:

Volts - 600Vac (or less), 450Vdc (or less)
Amps - 1-600A
IR — 200kA RMS Sym., 100kA DC
Agency Information: CE, Std. 248-8, Class J, UL Listed, Guide JDDZ, File E4273, CSA Certified, Class 1422-02, File 53787.

## Features and Benefits

- Easily coordinated with existing and new variable speed drives and electric controllers.
- Standard Class J dimensions allowing the use of readily available fuse blocks, holders, and switches.
- Allows the lowest let-thru energy of any branch circuit overcurrent protective device.


## Typical Applications

- Protection of AC and DC drives
- Equipment using power semiconductor devices Catalog Numbers (Amps)

| DFJ-1 | DFJ-15 | DFJ-70 | DFJ-225 |
| :--- | :--- | :--- | :--- |
| DFJ-2 | DFJ-20 | DFJ-80 | DFJ-250 |
| DFJ-3 | DFJ-25 | DFJ-90 | DFJ-300 |
| DFJ-4 | DFJ-30 | DFJ-100 | DFJ-350 |
| DFJ-5 | DFJ-35 | DFJ-110 | DFJ-400 |
| DFJ-6 | DFJ-40 | DFJ-125 | DFJ-450 |
| DFJ-8 | DFJ-45 | DFJ-150 | DFJ-500 |
| DFJ-10 | DFJ-50 | DFJ-175 | DFJ-600 |
| DFJ-12 | DFJ-60 | DFJ-200 |  |

Time-Current Characteristic Curves-Average Melt


## Current Limitation Curves



## North American - FWA 130V: 1000-4000A

## FWA

## Specifications

Description: North American style flush-end high speed fuses.
Dimensions: See Dimensions illustrations.

## Ratings:

Volts: - 130Vac


Amps: - 1000-4000A

> IR: - 200kA RMS Sym.

- 50kA @130Vdc

Agency Information: CE, UL Recognized JFHR2.E91958 on 1000-2000A fuses

## Electrical Characteristics

## Total Clearing $\mathbf{I}^{\mathbf{2} t}$

The total clearing $\mathrm{l}^{2 \mathrm{t}}$ at rated voltage and at power factor of $15 \%$ are given in the electrical
characteristics. For other voltages, the clearing ${ }^{12 t}$ is found by multiplying by correction factor, K, given as a function of applied working voltage, $\mathrm{E}_{\mathrm{g}}$, (rms).


## Dimensions - in

| Catalog Number | Fig. B | C | D | Thread Depth |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| FWA-1000AH-2000AH | 1 | 2.0 | 1.0 | - | Tapped $3 / 2^{\prime \prime}-24 \times 1 / 2^{\prime \prime}$ |
| FWA-2500AH-3000AH | 1 | 3.0 | 1.5 | - | Tapped $1 / 2^{\prime \prime}-20 \times 1 / 2^{\prime \prime}$ |
| FWA-4000AH | 2 | 3.5 | 1.5 | 1.5 | Tapped $1 / 2^{\prime \prime}-20 \times 1 / 2^{\prime \prime}$ |
| $1 \mathrm{~mm}=0.0394^{\prime \prime} / 1^{\prime \prime}=25.4 \mathrm{~mm}$ |  |  |  |  |  |

Fig. 1: 1000-3000A


Fig. 2: 4000A


## Arc Voltage

This curve gives the peak arc voltage, $U_{L}$, which may appear across the fuse during its operation as a function of the applied working voltage, $\mathrm{E}_{\mathrm{g}}$, (rms) at a power factor of $15 \%$.

## Power Losses



Watts loss at rated current is given in the electrical characteristics. The curve allows the calculation of the power losses at load currents lower than the rated current. The correction factor, $\mathrm{K}_{\mathrm{p}}$, is given as a function of the RMS load current, $\mathrm{I}_{\mathrm{b}}$, in \% of the rated current.


| Catalog <br> Numbers | Electrical Characteristics |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Rated Current RMS-Amps | $1^{12 t}\left(\mathbf{A}^{2} \mathrm{Sec}\right)$ |  | Watts Loss |
|  |  | Pre-arc | Clearing at 130 V |  |
| FWA-1000AH | 1000 | 170000 | 460000 | 60 |
| FWA-1200AH | 1200 | 270000 | 730000 | 70 |
| FWA-1500AH | 1500 | 520000 | 1400000 | 78 |
| FWA-2000AH | 2000 | 860000 | 2400000 | 108 |
| FWA-2500AH | 2500 | 1500000 | 4100000 | 130 |
| FWA-3000AH | 3000 | 2100000 | 5700000 | 150 |
| FWA-4000AH | 4000 | 3400000 | 9200000 | 257 |

- Watts loss provided at rated current.
- See accessories on page 141.


## Features and Benefits

- Excellent DC performance
- Low arc voltage and low energy let-through ( $\left.I^{2}+\right)$
- Low watts loss
- Superior cycling capability


## Typical Applications

- DC Common bus
- DC Drives
- Power converters/rectifiers
- Reduced voltage starters


## North American - FWA 130V: 1000-4000A

FWA 1000-4000A: 130V
Time-Current Curve


## Peak Let-Through Curve



## North American - FWA 150V: 70-1000A

## FWA

## Specifications

Description: North American style stud-mount fuses.
Dimensions: See Dimensions
illustrations.
Ratings:
Volts: - 150Vac/dc*
Amps: $-70-1000 \mathrm{~A}$
IR: - 100kA Sym. (70-400A)

- 200kA Sym. (450-1000A)
- 20kA @150Vdc (70-800A)
- 100kA @ 80Vdc (70-1000A)
*1000A rated @ 80Vdc.
Agency Information: CE, UL Recognized JFHR2.E91958


## Electrical Characteristics

## Total Clearing $\mathbf{I}^{\mathbf{2} t}$

The total clearing $\mathrm{I}^{2}$ t at rated voltage and at power factor of $15 \%$ are given in the electrical characteristics. For other voltages, the clearing $1^{2 t}$ is found by multiplying by correction factor, K, given as a function of applied working voltage, $E_{g}$, (rms).


## Dimensions - in

Fig. 1: 70-400A


Fig. 2: 500-1000A

$1 \mathrm{~mm}=0.0394^{\prime \prime} / 1^{\prime \prime}=25.4 \mathrm{~mm}$

## Arc Voltage

This curve gives the peak arc voltage, $\mathrm{U}_{\mathrm{L}}$, which may appear across the fuse during its operation as a function of the applied working voltage, $\mathrm{E}_{\mathrm{g}}$, (rms) at a power factor of $15 \%$.

## Power Losses

Watts loss at rated current is given in the electrical characteristics. The curve allows the calculation of the power losses at load currents lower than the rated current. The correction factor, $\mathrm{K}_{\mathrm{p}}$, is given as a function of the RMS load current, $\mathrm{I}_{\mathrm{b}}$, in \% of the rated current.



## Catalog Numbers

| Catalog <br> Number | Electrical Characteristics |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | RatedCurrentRMS-Amps | $1^{2} \mathrm{t}$ ( $\mathrm{A}^{2} \mathrm{Sec}$ ) |  | Watts <br> Loss |
|  |  | Pre-arc | Clearing at 150 V |  |
| FWA-70B | 70 | 470 | 4000 | 6.9 |
| FWA-80B | 80 | 670 | 6000 | 7.7 |
| FWA-100B | 100 | 1200 | 12000 | 9.0 |
| FWA-125B | 125 | 1870 | 18000 | 11.2 |
| FWA-150B | 150 | 2700 | 26000 | 13.5 |
| FWA-200B | 200 | 4780 | 45000 | 17.6 |
| FWA-250B | 250 | 7470 | 70000 | 22.5 |
| FWA-300B | 300 | 10760 | 100000 | 27.0 |
| FWA-350B | 350 | 15700 | 140000 | 30.6 |
| FWA-400B | 400 | 20300 | 180000 | 35.2 |
| FWA-500A | 500 | 39000 | 120000 | 35.0 |
| FWA-600A | 600 | 46000 | 140000 | 47.0 |
| FWA-700A | 700 | 75000 | 220000 | 49.0 |
| FWA-800A | 800 | 92000 | 280000 | 58.0 |
| FWA-1000A | 1000 | 170000 | 510000 | 60.0 |

- Watts loss provided at rated current.
- See accessories on page 141.


## Features and Benefits

- Excellent DC performance
- Low arc voltage and low energy let-through ( $\mathrm{I}^{2 \mathrm{t}}$ )
- Low watts loss
- Superior cycling capability


## Typical Applications

- DC Common bus
- DC Drives
- Power converters/rectifiers
- Reduced voltage starters


## North American — FWA 150V: 70-1000A

FWA 70-1000A: 150V
Time-Current Curve


Peak Let-Through Curve


## North American - FWX 250V: 35-2500A

## FWX

Specifications
Description: North American style stud-mount and flush-end fuses.
Dimensions: See Dimensions illustrations.

## Ratings:

```
Volts:- 250Vac/dc
Amps: - 35-2500A
    IR: - 200kA RMS Sym.
    50kA@250Vdc (35-800A)
```

Agency Information: CE, UL Recognized JFHR2.E56412 \& CSA Component Acceptance file Class 1422-30, (53787) on $35-800$ A fuses ( 50 kA IR @250Vdc).

## Electrical Characteristics

## Total Clearing $\mathbf{I}^{\mathbf{2} t}$

The total clearing $I^{2} t$ at rated voltage and at power factor of $15 \%$ are given in the electrical characteristics. For other voltages, the clearing $I^{2} t$ is found by multiplying by correction factor, K, given as a function of applied working
 voltage, $\mathrm{E}_{\mathrm{g}}$, (rms).

## Dimensions - in

| Amp |  | A | B | C | D | E | F | G | H | J | Tapped Thread Depth |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35-60 | 1 | 3.19 | 0.81 | 1.59 | 2.59 | 2.25 | 0.34 | 0.63 | 0.13 | 0.52 | - |
| 70-200 | 1 | 3.13 | 1.22 | 1.59 | 2.44 | 2.19 | 0.34 | 1.00 | 0.19 | 0.47 | - |
| 225-600 | 1 | 3.84 | 1.50 | 1.59 | 2.94 | 2.25 | 0.41 | 1.00 | 0.25 | 0.75 | - |
| 700-800 | 1 | 3.84 | 2.00 | 1.59 | 3.03 | 2.28 | 0.41 | 1.50 | 0.25 | 0.78 |  |
| 1000-1200 | 2 | 2.59 | 3.00 | 1.50 | - | - | - | - | - |  | $3 / 83-24 \times 1 / 2{ }^{\prime \prime}$ |
| 1500-2500 | 3 | 2.59 | 3.50 | 1.50 | 1.50 | - | - | - | - |  | $3 / 8 "--24 \times 1 / 2$ |

Fig. 1:
35-800A


Fig. 2:
1000-1200A


Fig. 3:
1500-2500A



## North American - FWX 250V: 35-2500A

FWX 35-800A: 250V
Time-Current Curve


## Peak Let-Through Curve



Prospective Short-Circuit Current Symmetrical RMS

FWX 1000-2500A(H): 250V
Time-Current Curve


Peak Let-Through Curve


Data Sheet: 35785299

## North American - FWH 500V: 35-1600A

## FWH

## Specifications

Description: North American style stud-mount fuses.
Dimensions: See Dimensions illustration.

## Ratings:

Volts: $-500 \mathrm{Vac} / \mathrm{dc}$ (35-800A only)
Amps: $-35-1600 \mathrm{~A}$

> IR: - 200kA Sym.

$$
-50 k A @ 500 V d c(35-800 A)
$$



Agency Information: CE, UL Recognition JFHR2.E91958 FWH-_B (35-200A, 1000-1200A), JFHR2.E56412 FWH-_A (225-600A), CSA Component Acceptance Class 1422-30, File 53787 (35-1600A).

## Electrical Characteristics

## Total Clearing $\mathbf{I}^{\mathbf{2} t}$

The total clearing $I^{2} t$ at rated voltage and at power factor of $15 \%$ are given in the electrical characteristics. For other voltages, the clearing $I^{2} t$ is found by multiplying by correction factor, K , given as a function of applied working voltage, $\mathrm{E}_{\mathrm{g}}$, (rms).


## Dimensions - in

| Range | Fig. A | B | C | D | E | F | G | H | J |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $35-60$ | 1 | 3.188 | 0.813 | 1.593 | 2.541 | 2.193 | 0.344 | 0.719 | 0.125 | 0.518 |
| $70-100$ | 1 | 3.625 | 0.947 | 1.736 | 2.853 | 2.807 | 0.352 | 0.750 | 0.125 | 0.375 |
| $125-200$ | 1 | 3.625 | 1.156 | 1.836 | 2.892 | 2.768 | 0.344 | 1.000 | 0.188 | 0.406 |
| $225-400$ | 1 | 4.340 | 1.500 | 2.090 | 3.440 | 2.750 | 0.410 | 1.000 | 0.250 | 0.750 |
| $450-600$ | 1 | 4.340 | 2.000 | 2.090 | 3.530 | 2.780 | 0.410 | 1.500 | 0.250 | 0.780 |
| $700-800$ | 1 | 6.340 | 2.500 | 2.090 | 4.970 | 3.440 | 0.530 | 2.000 | 0.380 | 1.300 |
| $1000-1200$ | 1 | 6.969 | 3.000 | 3.219 | 5.465 | 4.475 | 0.625 | 2.375 | 0.438 | 1.120 |
| $1400-1600$ | 2 | See Drawing |  |  |  |  |  |  |  |  |
| $1 \mathrm{~mm}=0.0394^{\prime \prime} / 1^{\prime \prime}=25.4 \mathrm{~mm}$ |  |  |  |  |  |  |  |  |  |  |

Fig. 1: 35-1200A


Fig. 2: 1400-1600A


## Arc Voltage

This curve gives the peak arc voltage, $U_{L}$, which may appear across the fuse during its operation as a function of theapplied working voltage, $\mathrm{E}_{\mathrm{g}}$, (rms) at a power
factor of $15 \%$.

## Power Losses

Watts loss at rated current is given in the electrical characteristics. The curve allows the calculation of the power losses at load currents lower than the rated current. The correction factor, $K_{p}$, is given as a function of the RMS load current, lb, in \% of the rated current.

## Catalog Numbers

| Catalog Numbers | Electrical Characteristics |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Rated Current RMS-Amps | $I^{2} \mathrm{t}\left(\mathrm{A}^{2} \mathrm{Sec}\right)$ |  | Watts Loss |
|  |  | Pre-arc | Clearing at 500 V |  |
| FWH-35B | 35 | 34 | 150 | 8 |
| FWH-40B | 40 | 76 | 320 | 7.5 |
| FWH-45B | 45 | 105 | 450 | 7.5 |
| FWH-50B | 50 | 135 | 670 | 7.5 |
| FWH-60B | 60 | 210 | 900 | 9.9 |
| FWH-70B | 70 | 210 | 900 | 10.6 |
| FWH-80B | 80 | 305 | 1400 | 12.7 |
| FWH-90B | 90 | 360 | 1600 | 15 |
| FWH-100B | 100 | 475 | 2000 | 17 |
| FWH-125B | 125 | 800 | 3500 | 25 |
| FWH-150B | 150 | 1100 | 4600 | 30 |
| FWH-175B | 175 | 1450 | 6200 | 35 |
| FWH-200B | 200 | 1900 | 8500 | 40 |
| FWH-225A | 225 | 4600 | 23300 | 39 |
| FWH-250A | 250 | 6300 | 32200 | 41 |
| FWH-275A | 275 | 7900 | 40300 | 46 |
| FWH-300A | 300 | 9800 | 49800 | 51 |
| FWH-325A | 325 | 13700 | 63800 | 53 |
| FWH-350A | 350 | 14500 | 72900 | 58 |
| FWH-400A | 400 | 19200 | 96700 | 65 |
| FWH-450A | 450 | 24700 | 127000 | 74 |
| FWH-500A | 500 | 29200 | 149000 | 84 |
| FWH-600A | 600 | 41300 | 206000 | 108 |
| FWH-700A | 700 | 55000 | 298000 | 120 |
| FWH-800A | 800 | 76200 | 409000 | 129 |
| FWH-1000A | 1000 | 92000 | 450000 | 145 |
| FWH-1200A | 1200 | 122000 | 600000 | 180 |
| FWH-1400A | 1400 | 200000 | 1000000 | 210 |
| FWH-1600A | 1600 | 290000 | 1400000 | 230 |

-Watts loss provided at rated current. •See accessories on page 141.

## Features and Benefits

- Excellent DC performance
- Low arc voltage and low energy let-through ( ${ }^{2 t}$ )
- Superior cycling capability


## Typical Applications

- DC Common bus
- DC Drives
- Power converters/rectifiers
- Reduced voltage starters

Data Sheet: 720007

## North American - FWH 500V: 35-1600A

FWH 35-200A(B) \& 900-1600A(A): 500V
Time-Current Curve


Peak Let-Through Curve


Data Sheet: 35785304

FWH 250-800A: 500V
Time-Current Curve


Peak Let-Through Curve


Data Sheet: 360

## North American - KAC 600V: 1-1000A

## KAC

Specifications
Description: North American style stud-mount fuses. These 600V fuses are supplied as replacements only. For new installations, Bussmann recommends the 700V FWP Series fuse.
Dimensions: See Dimensions illustrations.

## Ratings:

Volts: - 600Vac
Amps: - 1-1000A
IR: - 200kA RMS Sym.
Agency Information: CE, UL Recognition JFHR2.E56413 on 1-600A only.

Catalog Numbers (Amps)

| KAC-1 | KAC-25 | KAC-175 |
| :--- | :--- | :--- |
| KAC-2 | KAC-30 | KAC-200 |
| KAC-3 | KAC-35 | KAC-225 |
| KAC-4 | KAC-40 | KAC-250 |
| KAC-5 | KAC-45 | KAC-300 |
| KAC-6 | KAC-50 | KAC-350 |
| KAC-7 | KAC-60 | KAC-400 |
| KAC-8 | KAC-70 | KAC-450 |
| KAC-9 | KAC-80 | KAC-500 |
| KAC-10 | KAC-90 | KAC-600 |
| KAC-12 | KAC-100 | KAC-700 |
| KAC-15 | KAC-110 | KAC-800 |
| KAC-17.5 | KAC-125 | KAC-1000 |
| KAC-20 | KAC-150 |  |
| - See accessories on page 141. |  |  |

## Features and Benefits

- Low arc voltage and low energy let-through $\left(\mathrm{I}^{2} \mathrm{t}\right)$
- Low watts loss
- Superior cycling capability


## Typical Applications

- Power converters/rectifiers
- Reduced voltage starters

Dimensions - in

| Amp |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Range | Fig. | A | B1 | B2 | B3 | C | D | E |  | G |  |
| 1-30A | 1 | 2.875 | 2.500 | - | - | 1.875 | 0.406 | - | 0.563 | 0.063 | 0.257 |
| 35-60A | 2 | 4.375 | - | 3.750 | 3.500 | 2.750 | 0.625 | 0.343 | 0.813 | 0.094 | 0.468 |
| 70-100A | 2 | 5.000 | - | 4.063 | 3.656 | 2.750 | 0.750 | 0.406 | 1.000 | 0.125 | 0.609 |
| 110-200A | 2 | 5.140 | - | 4.390 | 3.766 | 2.906 | 1.000 | 0.406 | 1.500 | 0.188 | 0.718 |
| 225-400A | 2 | 6.182 | - | 4.815 | 4.565 | 3.000 | 1.625 | 0.562 | 2.000 | 0.250 | 0.687 |
| 450-800A | 1 | 6.250 | 4.750 | - | - | 3.063 | 2.000 | - | 2.500 | 0.250 | 0.563 |
| 1000A | 1 | 7.250 | 4.750 | - | - | 3.063 | 2.750 | - | 3.500 | 0.375 | 0.563 |

$1 \mathrm{~mm}=0.0394^{\prime \prime} / 1^{\prime \prime}=25.4 \mathrm{~mm}$

Fig. 1: 1-30 \& 450-1000A


Fig. 2: $35-400 \mathrm{~A}$


## North American - KBC 600V: 35-800A

## KBC

## Specifications

Description: North American style stud-mount and flush-end fuses. These 600V fuses are supplied as replacements only. For new installations, Bussmann recommends the 700V FWP Series fuse.
Dimensions: See Dimensions illustrations.

## Ratings:

Volts: - 600Vac
Amps: - 35-800A
IR: - 200kA RMS Sym.
Agency Information: CE, UL Recognition JFHR2.E56412 on 35-600A only.

Dimensions - in

| Amp |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Range |$|$| Fig. | A | B | C | D | E | F | G | $\mathbf{H}$ | $\mathbf{I}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $35-60 \mathrm{~A}$ | 1 | 4.375 | 3.750 | 3.500 | 2.750 | 0.343 | 0.625 | 0.813 | 0.094 |
| $70-468$ |  |  |  |  |  |  |  |  |  |
| $70-100 \mathrm{~A}$ | 2 | See Drawing |  |  |  |  |  |  |  |
| $110-200 \mathrm{~A}$ | 1 | 4.406 | 3.719 | 3.594 | 2.906 | 0.312 | 0.875 | 1.219 | 0.187 |
| $225-400 \mathrm{~A}$ | 1 | 5.125 | 4.188 | 3.563 | 2.906 | 0.406 | 1.000 | 1.500 | 0.250 |

Fig. 1: 35-60 and 110-600A


Fig. 2: 70-100A


Catalog Numbers (Amps)

| KBC-35 | KBC-100 | KBC-300 |
| :--- | :--- | :--- |
| KBC-40 | KBC-110 | KBC-350 |
| KBC-45 | KBC-125 | KBC-400 |
| KBC-50 | KBC-150 | KBC-450 |
| KBC-60 | KBC-175 | KBC-500 |
| KBC-70 | KBC-200 | KBC-600 |
| KBC-80 | KBC-225 | KBC-800 |
| KBC-90 | KBC-250 |  |
| - See accessories on page 141. |  |  |

## Features and Benefits

- Low arc voltage and low energy let-through ( $\mathrm{I}^{2 \mathrm{t}}$ )
- Low watts loss
- Superior cycling capability

Typical Applications

- Power converters/rectifiers
- Reduced voltage starters


## North American - FWP 700V: 5-1200A

## FWP

## Specifications

Description: North American
style stud-mount fuses.
Dimensions: See Dimensions illustrations.

## Ratings:

Volts: - 700Vac/dc
Amps: $-5-1200 \mathrm{~A}$
IR: - 200kA RMS Sym.

- 50kA @ 700 Vdc


Agency Information: CE, UL Recognition JFHR2.E91958 FWP-_B (5-100A, 700-1200A), JFHR2.E56412 FWP-_A (125-600A) \& CSA Component Acceptance file Class 1422-30, (53787) on 5-800A

Electrical Characteristics

## Total Clearing $\mathbf{I}^{\mathbf{2} t}$

The total clearing $I^{2} t$ at rated voltage and at power factor of $15 \%$ are given in the electrical characteristics. For other voltages, the clearing $I^{2} t$ is found by multiplying by correction factor, K, given as a function of applied working voltage, $E_{g}$, (rms).


1) $35-100 \mathrm{~A}$ Range
2) $125-600 \mathrm{~A}$ Range
3) $700-1200 \mathrm{~A}$ Range

## Dimensions - in

| Amp |  |  |  |
| :---: | :---: | :---: | :---: |
| Range | Fig | A | B |
| 5-30 | 1 | 2.870 | 0.5 |
| 35-60 | 1 | 4.375 | 0.813 |
| 70-100 | 1 | 4.406 | 0.947 |
| 125-200 | 1 | 5.090 | 1.500 |
| 225-400 | 1 | 5.090 | 2.000 |
| 450-600 | 1 | 7.090 | 2.50 |
| 700-800 | 1 | 6.630 | 2.000 |
| 900-1000 | 2 | See D | awing |
| 1200 | 3 | See D | awing |

Fig. 1: 5-800A


Fig. 2: 900-1000A


Fig. 3: 1200A


## Arc Voltage

This curve gives the peak arc voltage, $\mathrm{U}_{\mathrm{L}}$, which may appear across the fuse during its operation as a function of the applied working voltage, $\mathrm{E}_{\mathrm{q}}$, (rms) at a power factor of $15 \%$.

## Power Losses

Watts loss at rated current is given in the electrical characteristics. The curve allows the calculation of the power losses at load currents lower than the rated current. The correction factor, $\mathrm{K}_{\mathrm{p}}$, is given as a function of the RMS load current, $\mathrm{I}_{\mathrm{b}}$, in \% of the rated current.



Catalog Numbers

| Catalog Numbers | Electrical Characteristics |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Rated Current RMS-Amps | $I^{2} \mathrm{t}\left(\mathrm{A}^{2} \mathrm{Sec}\right)$ |  | Watts Loss |
|  |  | Pre-arc | Clearing at 700V |  |
| FWP-5B | 5 | 1.6 | 10 | 1.5 |
| FWP-10B | 10 | 3.6 | 20 | 4 |
| FWP-15B | 15 | 10 | 75 | 5.5 |
| FWP-20B | 20 | 26 | 180 | 6 |
| FWP-25B | 25 | 44 | 340 | 7 |
| FWP-30B | 30 | 58 | 450 | 9 |
| FWP-35B | 35 | 34 | 160 | 12 |
| FWP-40B | 40 | 76 | 320 | 12 |
| FWP-50B | 50 | 135 | 600 | 12 |
| FWP-60B | 60 | 210 | 950 | 15.5 |
| FWP-70B | 70 | 305 | 2000 | 18 |
| FWP-80B | 80 | 360 | 2400 | 21 |
| FWP-90B | 90 | 415 | 2700 | 25 |
| FWP-100B | 100 | 540 | 3500 | 27 |
| FWP-125A | 125 | 1800 | 7300 | 28 |
| FWP-150A | 150 | 2900 | 11700 | 32 |
| FWP-175A | 175 | 4200 | 16700 | 35 |
| FWP-200A | 200 | 5500 | 22000 | 43 |
| FWP-225A | 225 | 7700 | 31300 | 45 |
| FWP-250A | 250 | 10500 | 42500 | 48 |
| FWP-300A | 300 | 17600 | 71200 | 58 |
| FWP-350A | 350 | 23700 | 95600 | 65 |
| FWP-400A | 400 | 31000 | 125000 | 78 |
| FWP-450A | 450 | 36400 | 137000 | 94 |
| FWP-500A | 500 | 45200 | 170000 | 107 |
| FWP-600A | 600 | 66700 | 250000 | 122 |
| FWP-700A | 700 | 54000 | 300000 | 125 |
| FWP-800A | 800 | 78000 | 450000 | 140 |
| FWP-900A | 900 | 91500 | 530000 | 150 |
| FWP-1000A | 1000 | 120000 | 600000 | 170 |
| FWP-1200A | 1200 | 195000 | 1100000 | 190 |

## Features and Benefits

- Excellent DC performance
- Low arc voltage and low energy let-through ( ${ }^{2 \mathrm{I}}$ )
- Superior cycling capability


## Typical Applications

- DC Common bus
- DC Drives
- Power converters/rectifiers
- Reduced voltage starters


## North American — FWP 700V: 5-1200A

FWP 5-30A(B): 700V
Time-Current Curve


## Peak Let-Through Curve



FWP 35-100A(B) \& 700-1200A(A): 700V
Time-Current Curve


Peak Let-Through Curve


North American - FWP 700V: 5-1200A

## FWP 150-600A: 700V

Time-Current Curve


Peak Let-Through Curve


## Data Sheet: $\mathbf{3 6 1}$

## North American - FWJ 1000V: 35-2000A

## FWJ

## Specifications

Description: North American style stud-mount fuses.
Dimensions: See Dimensions illustration.

## Ratings:

Volts: $-1000 \mathrm{Vac} / 800 \mathrm{Vdc}$
Amps: - 35-2000A
IR: $-25 \mathrm{kA}(35-200 \mathrm{~A})$

- 100kA (250-2000A)
- 50kA @ 800Vdc

$$
(35-200 \mathrm{~A}, 450-600 \mathrm{~A})
$$

Agency Information: CE, UL
 Recognition JFHR8.E91958 on 35-600A only.

## Electrical Characteristics

## Total Clearing I ${ }^{2}$ t

The total clearing $\mathrm{I}^{2 t}$ at rated voltage and at power factor of $15 \%$ are given in the electrical characteristics. For other voltages, the clearing $I^{2} t$ is found by multiplying by correction factor, K, given as a function of applied working voltage, $E_{g}$, (rms).


## Dimensions - in

| Amp |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Range | Fig. | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ | $\mathbf{F}$ | $\mathbf{G}$ | $\mathbf{H}$ | $\mathbf{I}$ |
| $35-60$ | 1 | 5.000 | 0.940 | 3.110 | 4.235 | 4.180 | 0.352 | 0.750 | 0.125 | 0.380 |
| $70-100$ | 1 | 4.932 | 1.125 | 3.085 | 4.266 | 4.156 | 0.352 | 1.000 | 0.188 | 0.407 |
| $125-200$ | 1 | 5.685 | 1.526 | 3.261 | 4.803 | 4.055 | 0.445 | 1.000 | 0.250 | 0.819 |
| $250-400$ | 1 | 5.768 | 2.000 | 3.500 | 4.811 | 4.150 | 0.433 | 1.500 | 0.250 | 0.764 |
| $500-600$ | 1 | 7.201 | 2.500 | 3.465 | 5.984 | 4.706 | 0.562 | 2.000 | 0.375 | 1.201 |
| $800-2000$ | 1 | 6.811 | 3.500 | 3.312 | 5.472 | 4.962 | 0.625 | 2.750 | 0.500 | 0.880 |
| $1 \mathrm{~mm}=0.0394^{\prime \prime} / 1^{\prime \prime}=25.4 \mathrm{~mm}$ |  |  |  |  |  |  |  |  |  |  |

Fig. 1: 35-2000A


Data Sheet: 720027

## Arc Voltage

This curve gives the peak arc voltage, $\mathrm{U}_{\mathrm{L}}$, which may appear across the fuse during its operation as a function of the applied working voltage, $\mathrm{E}_{\mathrm{g}}$, (rms) at a power factor of $15 \%$.

## Power Losses

Watts loss at rated current is given in the electrical characteristics. The curve allows the calculation of the power losses at load currents lower than the rated current. The correction factor, $\mathrm{K}_{\mathrm{p}}$, is given as a function of the RMS load current, $\mathrm{l}_{\mathrm{b}}$, in \% of the rated current.

## Catalog Numbers

| Catalog Numbers | Electrical Characteristics |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Rated Current RMS-Amps | 12t (A2 Sec) |  | WattsLoss |
|  |  | Pre-arc | Clearing at 1000 V |  |
| FWJ-35A | 35 | 210 | 2000 | 7 |
| FWJ-40A | 40 | 300 | 2500 | 8 |
| FWJ-50A | 50 | 470 | 3500 | 10 |
| FWJ-60A | 60 | 670 | 5000 | 11 |
| FWJ-70A | 70 | 1100 | 6900 | 12 |
| FWJ-80A | 80 | 1550 | 9700 | 13 |
| FWJ-90A | 90 | 1900 | 12000 | 14 |
| FWJ-100A | 100 | 2800 | 17500 | 15 |
| FWJ-125A | 125 | 4800 | 35000 | 16 |
| FWJ-150A | 150 | 6300 | 45000 | 25 |
| FWJ-175A | 175 | 7500 | 65000 | 30 |
| FWJ-200A | 200 | 11700 | 80000 | 32 |
| FWJ-250A | 250 | 16000 | 112000 | 50 |
| FWJ-300A | 300 | 23500 | 164000 | 56 |
| FWJ-350A | 350 | 33000 | 231000 | 62 |
| FWJ-400A | 400 | 47000 | 330000 | 67 |
| FWJ-500A | 500 | 39500 | 329000 | 95 |
| FWJ-600A | 600 | 61000 | 520000 | 105 |
| FWJ-800A | 800 | 87000 | 500000 | 182 |
| FWJ-1000A | 1000 | 190000 | 1100000 | 206 |
| FWJ-1200A | 1200 | 370000 | 2100000 | 240 |
| FWJ-1400A | 1400 | 470000 | 2700000 | 248 |
| FWJ-1600A | 1600 | 700000 | 4000000 | 267 |
| FWJ-1800A | 1800 | 925000 | 5300000 | 239 |
| FWJ-2000A | 2000 | 1330000 | 7600000 | 244 |

- Watts loss provided at rated current.


## Features and Benefits

- Excellent DC performance
- Low arc voltage and low energy let-through ( $I^{2 t}$ )
- Low watts loss
- Superior cycling capability


## Typical Applications

- DC Common bus
- DC Drives
- Power converters/rectifiers
- Reduced voltage starters


## North American - FWJ 1000V: 35-2000A

## FWJ 35-600A: 1000V

Time-Current Curve


FWJ 800-2000A: 1000V
Time-Current Curve


Data Sheet: 35785309

Peak Let-Through Curve


## North American Fuse Accessories

## Fuse Bases (Blocks)

## Modular Style

Bussmann offers a comprehensive line of fuse bases that provide the user with design and manufacturing flexibility. Two identical half bases make up a Bussmann modular fuse base. These "split" units can be panel mounted any distance apart to accommodate any length fuse.

## Stud Type (Not sold in pairs)

The simpler design is the C5268 Series modular fuse base. With this design, the fuse terminal and cable (with termination) are mounted on the same stud, minimizing labor needed for installation. The stud type base is available in the configuration shown in the table below.

| Catalog <br> Number | Max Fuse <br> Amp Rating | Stud <br> Height (in) | Stud Dia. <br> \& Threads |
| :--- | :---: | :---: | :--- |
| C5268-1 | 200 | 1.00 | $5 / 1^{\prime \prime}-18$ |
| $\mathrm{C} 5268-2$ | 200 | 1.75 | $5 / 11^{\prime \prime}-18$ |
| $\mathrm{C} 5268-3$ | 200 | 0.75 | $5 / 10^{\prime \prime}-18$ |
| $\mathrm{C} 5268-4$ | 100 | 1.00 | $1 / 4^{\prime \prime}-20$ |
| $\mathrm{C} 5268-5$ | 100 | 1.75 | $1 / 4^{\prime \prime}-20$ |



## Connector Type

Bussmann also offers a modular style fuse base that utilizes a tin-plated connector (for wire termination and heat dissipation) and a plated-steel stud (for fuse mounting). The connector type fuse base is available in the configurations shown below. Consult Bussmann for additional product details.

| Modular <br> Base Style | Max <br> Voltage | Max Fuse <br> Amp Rating | Data Sheet <br> Number |
| :--- | :---: | :---: | :---: |
| 1BS101 | 600 | 100 | 1206 |
| 1BS102 | 600 | 400 | 1207 |
| 1BS103 | 600 | 400 | 1208 |
| 1BS104 | 600 | 600 | 1209 |
| BH-0xxx | 700 | 100 | 1200 |
| BH-1xxx | 2500 | 400 | 1201 |
| BH-2xxx | 5000 | 400 | 1202 |
| BH-3xxx | 1250 | 700 | 1203 |

Refer to page 306 for BH style holders.


